Series

	4 - Mastery	3 - Proficient	2 - Basic	1 - Below Basic	$\mathrm{O} \text { - No }$ Evidence
Determine whether a series converges or diverges. (LIM-7.A)		Determine whether a series converges (including conditional or absolute) or diverges using any test. Follows math practices of algebraic computation, precision and reasoning*	Determine whether a series converges or diverges using more than four of the following tests: - Geometric series - P-Series - Nth Term Test - Direct Comparison - Limit Comparison - Alternating Series Test - Integral Test - Ratio Test	Determine whether a series converges or diverges using four of the following test: - Geometric series - P-Series - Nth Term Test - Direct Comparison - Limit Comparison - Alternating Series Test - Integral Test - Ratio Test	
Determine or estimate the sum of a series. (LIM-7.B, LIM8.C)	Can Extend thinking beyond the standard, including tasks that may involve one of the following:	Determine the sum of a geometric series And Find the error using alternating series error and Lagrange error Follows math practices of algebraic computation, precision and reasoning*	Determine the sum of a geometric series And Find the error using alternating series error or Lagrange error	Determine the sum of a geometric series.	
Construct and use Taylor polynomials. (LIM-8.A, LIM8B)	- Designing - Connecting - Synthesizing - Applying - Justifying - Critiquing - Analyzing - Creating - Proving	Write a Taylor polynomial using the definition. And Use the polynomial to estimate a function value. Follows math practices of algebraic computation, precision and reasoning*	Write a Maclaurin polynomial using the definition. And Use the polynomial to estimate a function value.	Write the coefficients of a Taylor or Maclaurin polynomial using the definition	reasoning or application to solve the problem Does not meet the criteria in a level 1
Write a power series representing a given function. (LIM-8.E, LIM8.F, LIM-8.G) Determine the radius and interval of convergence of a power series. (LIM-8.D)		Manipulate a power series using a combination of the following: - Algebraic manipulations - Substitution - Properties of Geometric Series - Integration - Differentiation AND Find the interval of convergence including if the endpoints are closed or open intervals Follows math practices of algebraic computation, precision and reasoning*	Manipulate a power series using any of the following: - Algebraic manipulations - Substitution - Properties of Geometric Series - Integration - Differentiation AND Sets up the ratio test and simplifies correctly to identify the radius of convergence.	Knows the Maclaurin series for - $\cos x$ - ex - $\quad \sin x$ - $1 /(1-x)$ AND Sets up the ratio test and simplifies correctly.	

*Math Practices for AP Calculus include:

- Algebraic processes and computations completed logically and correctly
- Attend to precision graphically, numerically and analytically
- Clearly present reasoning and justification with accurate and precise language

